Gaussian Beam Methods for the Dirac Equation in the Semi-classical Regime

نویسندگان

  • HAO WU
  • ZHONGYI HUANG
  • DONGSHENG YIN
چکیده

The Dirac equation is an important model in relativistic quantum mechanics. In the semi-classical regime ε≪1, even a spatially spectrally accurate time splitting method [6] requires the mesh size to be O(ε), which makes the direct simulation extremely expensive. In this paper, we present the Gaussian beam method for the Dirac equation. With the help of an eigenvalue decomposition, the Gaussian beams can be independently evolved along each eigenspace and summed to construct an approximate solution of the Dirac equation. Moreover, the proposed Eulerian Gaussian beam keeps the advantages of constructing the Hessian matrices by simply using level set functions’ derivatives. Finally, several numerical examples show the efficiency and accuracy of the method.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fast Communication Gaussian Beam Methods for the Dirac Equation in the Semi-classical Regime

The Dirac equation is an important model in relativistic quantum mechanics. In the semi-classical regime ε≪1, even a spatially spectrally accurate time splitting method [6] requires the mesh size to be O(ε), which makes the direct simulation extremely expensive. In this paper, we present the Gaussian beam method for the Dirac equation. With the help of an eigenvalue decomposition, the Gaussian ...

متن کامل

Eulerian Gaussian beams for Schrödinger equations in the semi-classical regime

We propose Gaussian-beam based Eulerian methods to compute semi-classical solutions of the Schrödinger equation. Traditional Gaussian beam type methods for the Schrödinger equation are based on the Lagrangian ray tracing. We develop a new Eulerian framework which uses global Cartesian coordinates, level-set based implicit representation and Liouville equations. The resulting method gives unifor...

متن کامل

Semi-Eulerian and High Order Gaussian Beam Methods for the Schrödinger Equation in the Semiclassical Regime

A novel Eulerian Gaussian beam method was developed in [8] to compute the Schrödinger equation efficiently in the semiclassical regime. In this paper, we introduce an efficient semi-Eulerian implementation of this method. The new algorithm inherits the essence of the Eulerian Gaussian beam method where the Hessian is computed through the derivatives of the complexified level set functions inste...

متن کامل

Gaussian Beam Methods for the Schrödinger Equation in the Semi-classical Regime: Lagrangian and Eulerian Formulations

The solution to the Schrödinger equation is highly oscillatory when the rescaled Planck constant ε is small in the semiclassical regime. A direct numerical simulation requires the mesh size to be O(ε). The Gaussian beam method is an efficient way to solve the high frequency wave equations asymptotically, outperforming the geometric optics method in that the Gaussian beam method is accurate even...

متن کامل

Numerical superposition of Gaussian beams over propagating domain for high frequency waves and high-order invariant-preserving methods for dispersive waves

This thesis is devoted to efficient numerical methods and their implementations for two classes of wave equations. The first class is linear wave equations in very high frequency regime, for which one has to use some asymptotic approach to address the computational challenges. We focus on the use of the Gaussian beam superposition to compute the semi– classical limit of the Schrödinger equation...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011